AIR DISTRIBUTION INSTALLATION CERTIFICATION

Certification Information

Scope - Tests a candidate's knowledge of the installation, service, maintenance, and repair of HVAC systems. System sizes are limited to 12,000 CFM or less airflow.

Qualifications

- This is a test and certification for **TECHNICIANS** in the HVAC industry. The test is designed for top level installation technicians. This test for certification is not intended for the HVAC system designer, sales force, or the engineering community. To become NATE-certified, you must pass this specialty and a **CORE INSTALL** exam.
- This test will measure what 80% of the **Air Distribution** candidates have an 80% likelihood of encountering at least once during the year on a **NATIONAL** basis.
- Suggested requirement is one year of field experience working on Air Distribution systems as an installation technician and technical training for theoretical knowledge.

Test Specifications

<table>
<thead>
<tr>
<th>Closed Book</th>
<th>2.5 Hour Time Limit</th>
<th>100 Questions</th>
<th>Passing Score: PASS/FAIL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SECTION AREA DESCRIPTION</th>
<th>SECTION PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td>40%</td>
</tr>
<tr>
<td>Service</td>
<td>10%</td>
</tr>
<tr>
<td>System Components</td>
<td>28%</td>
</tr>
<tr>
<td>Applied Knowledge</td>
<td>22%</td>
</tr>
</tbody>
</table>

Air Distribution Industry References

The reference materials listed below will be helpful in preparing for this exam. These materials may **NOT** contain all of the information necessary to be competent in this specialty or to pass the exam.

- American National Standards Institute (ANSI) / Air Conditioning Contractors of America (ACCA) Manuals - Latest Edition
 - “D”, “J”, “Q” - Quality Installation, and “S”
- ACCA Manuals “T” and “RS” - Latest Editions
- ACCA Residential Duct Diagnostics and Repair - Latest Edition
- AHRI-Hydonics Section-IBO/RAH Latest Edition
- International Mechanical Code - Latest Edition with Addendum
- International Plumbing Code - Latest Edition with Addendum
- Uniform Mechanical Code - Latest Edition with Addendum
- ENERGY STAR™ Home Sealing Standards - Latest Edition with Addendum
- Duct Calculators – Sheet Metal, Ductboard, and Flexible Duct
- American National Standards Institute (ANSI) / Sheet Metal and Air Conditioning Contractors’ National Association, Inc. (SMACNA) Manuals
 - HVAC Duct Construction Standards - Metal and Flexible
- Sheet Metal and Air Conditioning Contractors’ National Association, Inc. (SMACNA) Manuals
- Air Diffusion Council Flexible Duct Performance & Installation Standards
- North American Insulation Manufacturers Association (NAIMA) Manuals
 - Fibrous Glass Duct Construction Standards and A Guide to Insulated Air Duct Systems

Passing Score Development Process

The passing scores for the NATE tests were established using a systematic procedure (a Passing Score Study). This procedure employed the judgment of experienced HVAC professionals and educators representing various HVAC specialties and geographical areas. The passing scores were set using criteria defining competent performance. The passing score for different test forms may vary slightly due to the comparative difficulty of the test questions.

Exam Copyrights

All testing documents and questions are the copyrighted property of North American Technician Excellence Inc.-NATE. It is forbidden under federal copyright law to copy, reproduce, record, distribute or display these documents or questions by any means, in whole or part, without written permission from NATE. Doing so may subject you to severe civil and/or criminal penalties, including imprisonment and/or fines for criminal violations.
INSTALLATION

DUCT FABRICATION

DUCT FABRICATION EQUIPMENT
Ductboard tools - 90 V-groove, end cutoff, female shiplap, hole cutter, stapler, etc.
Flex tools - tensioning strap tools, knives, etc.
Metal tools - metal snips, sheers, benders, breaks, hand formers, calipers, rulers, stapler, etc.

FABRICATION TECHNIQUES FOR METAL DUCT
Making seams - pittsburgh and snap lock
Making transverse joints - drive slips, reinforced drive slips, "s" slip, and standing "s" slip
Making cross breaks in rectangular duct
Crimping round pipe

FABRICATION TECHNIQUES FOR DUCTBOARD
Layout of duct fitting
Groove cutting - hand / machine
Use of joint tape

DUCT INSTALLATION

FIELD CONSTRUCTION / INSTALLATION
Ductboard installation technique
Techniques for joining dissimilar duct
Duct of alternate materials - wood, aluminum, etc.

INSTALLING METAL DUCT
Assembly methods for rectangular duct
Installation technique - rectangular metal
Assembly methods for round duct
Installation technique - round metal
Hanging ductwork
Sealing metal duct
Insulation - internal and external, vapor barriers
Assembling for low noise and low pressure drop

INSTALLING FLEXIBLE DUCT
Assembly methods - appropriate length
Flexible duct joints
Hanging flexible duct
Installation technique - flex duct
Sealing flexible duct

INSTALLING DUCTBOARD
Assembly methods for ductboard - supports
Installation technique - ductboard
Hanging methods for ductboard
Sealing ductboard

INSTALLING GRILLES, REGISTERS, DIFFUSERS, & DAMPER
Mounting to ductwork
Securing methods

CHASES USED AS DUCTS
Floor joists as air ducts
Vertical chases

RECONNECTING DUCT WHEN REPLACING EQUIPMENT
Reconnecting metal duct
Reconnecting flexible duct
Reconnecting ductboard duct

SYSTEM SETUP
PREPARING SYSTEM FOR OPERATION
Removing shipping restraints
Inspecting for concealed damage
Inspect wiring
SETTING DAMPER POSITIONS
Determining estimated damper positions
Setting and securing position

SETTING REGISTERS AND DIFFUSERS
 Determining estimated damper positions
 Setting/secure position

SETTING BLOWER SPEEDS
 Determining appropriate setting
 Setting blower for setup checks
 Setting blower for system operation

AIRFLOW MEASUREMENTS
INTRODUCTION TO AIRFLOW MEASUREMENTS
 Introduction to airflow
 Static pressure

AIRFLOW VELOCITY MEASUREMENTS
 Introduction to airflow velocity
 Velometer - electronic and mechanical
 Anemometer
 Velocity measurement procedures
 Gauge calibration

AIRFLOW PRESSURE MEASUREMENTS
 Overview of static pressure measurements
 Inclined manometer
 Diaphragm type differential pressure gauge
 U-tube manometer
 Electronic manometer / pressure measurement
 Gauge / meter calibration
 Absolute vs. Gauge Pressure

AIRFLOW VOLUME MEASUREMENTS
 Introduction to volume
 Airflow hood
 Formulae for determining CFM of air
 Formulae for weight of air
 Locations for air volume measurements

AIRFLOW CHECKS & DESIGN TOOLS
 Using manufacturer's airflow charts and tables
 Using a duct calculator and design charts

SERVICE

BASIC AIR DISTRIBUTION SYSTEM INSPECTION

STRUCTURAL INTEGRITY
 Duct support
 Joint integrity

NOISE PROBLEMS
 Oil canning
 Vibration

AIR LEAKS
 Smoke test - positive and negative envelope pressure

INSPECTION AND REPAIR OF METAL DUCT SYSTEMS

INSPECTING FOR STRUCTURAL INTEGRITY
 Inspecting joints
 Inspecting seams
 Locating improper openings
 Inspecting for proper support

INSPECTING FOR LEAKS
 Visual inspection
 Inspection by sound

INSPECTING FOR NOISE
 Identifying air velocity noise
 Identifying mechanical noise

REPAIRING METAL DUCT SYSTEMS
Repairing leaks
Repairing noise problems
INSPECTION AND REPAIR OF DUCTBOARD SYSTEMS
INSPECTING FOR STRUCTURAL INTEGRITY
 Inspecting joints
 Inspecting seams
 Locating improper openings
 Inspecting for proper support
INSPECTING FOR LEAKS
 Visual inspection
 Inspection by sound
INSPECTING FOR NOISE
 Identifying air velocity noise
 Identifying mechanical noise
REPAIRING DUCTBOARD DUCT SYSTEMS
 Repairing leaks
 Repairing noise problems
 Repairing structural integrity problems
INSPECTION AND REPAIR OF FLEXIBLE DUCT SYSTEMS
INSPECTING FOR STRUCTURAL INTEGRITY
 Inspecting joints
 Locating improper openings
 Inspecting for proper support
 Inspecting for improper routing
INSPECTING FOR LEAKS
 Visual inspection
 Inspection by sound
INSPECTING FOR NOISE
 Identifying air velocity noise
 Identifying mechanical noise
REPAIRING FLEXIBLE DUCT SYSTEMS
 Repairing leaks
 Repairing noise problems
 Repairing structural integrity problems
INSPECTION AND REPAIR OF GRILLES AND REGISTERS
INSPECTING FOR STRUCTURAL INTEGRITY
 Inspecting joints
 Inspecting for proper mounting
 Inspecting for proper settings and adjustments
INSPECTING FOR NOISE
 Inspecting for noise with operating blower
 Inspecting for proper seal
 Inspecting for proper settings
REPAIRING GRILLES AND REGISTERS
 Repairing leaks
 Repairing noise problems
 Repairing structural integrity problems
INSPECTING FOR LEAKS
 Visual inspection
 Inspection by sound
INTRODUCTION TO ELECTRICAL TROUBLESHOOTING
LOW VOLTAGE FIELD WIRING
 Voltage tests
 Troubleshooting equipment with electronic devices
 Equipment continuity tests
LINE VOLTAGE FIELD WIRING
 Voltage tests
 Troubleshooting equipment with electronic devices
Equipment continuity tests
INTRODUCTION TO SYSTEMS

HEAT TRANSFER AND THE BASIC COOLING CYCLE
Heat transfer and cooling
Basic refrigeration circuit - 7 components

DUCT SYSTEMS

BASIC DUCT SYSTEMS
Overview of duct systems
Duct configuration - extended plenum
Duct configuration - reducing extended plenum
Duct configuration - perimeter radial
Duct configuration - perimeter loop
Duct configuration - overhead radial
Duct configuration - branching flexible
Duct configuration - concentric

DUCT LOCATION
Attic
Basement
Crawlspace
Slab
Roof
Furr down
Exposed
Chases

BASIC ZONE SYSTEMS
Equipment zoned
Air side zoned

DUCT MATERIALS
Define / recognize ductboard
Define / recognize metal duct
Define / recognize flexible duct
Define / recognize PVC pipe
Insulating material

FITTING NOMENCLATURE
Define / recognize plenum
Define / recognize transition
Define / recognize elbow - 90 degrees and 45 degrees
Define / recognize round duct
Define / recognize rectangular duct
Define / recognize turning vanes
Return configurations - ducted, central, etc.
Define / recognize wye - rectangular and round
Define / recognize damper - rectangular and round
Sheet metal duct joints - "s" and drive, snaplock, button lock, etc.
Define/recognize flexible/canvas connector

DAMPERS
Balancing
Splitters
Economizers
Fresh air
Fire

GRILLES
Types and uses
Selecting grilles by volume and velocity

REGISTERS
Types and uses
Selecting registers
Selecting registers by air spread and throw capacity

DIFFUSERS
Types and uses
Selecting diffusers
Selecting diffusers by air spread and throw capacity

Filtration Systems
- Media type filters
- Electronic air cleaners (EAC's)
- Electrostatic filters - non-electric

Ventilation Systems
- Attic exhaust
- Residential exhaust(s)
- Lt. Commercial exhaust(s)
- Heat / energy recovery ventilators
- Infiltration

Humidifiers
- Fundamentals of operation
- Types
- Duct material requirements
- Installation support and location

Basic Gas Furnaces
Gas Heat - Components
- Define heat exchanger
- Define fan controls
- Define limit controls
- Define vent system

Gas Heat - Operation
- Define combustion air system
- Air side requirements

Basic Oil Furnaces
Oil Heat - Components
- Define limit controls
- Define heat exchanger
- Define vent system

Oil Heat - Operation
- Define combustion air system
- Air side requirements

Basic Air Conditioning / Heat Pumps
Basic Components
- Define evaporator
- Define condenser
- Define compressor

Basic Operation
- Air side requirements

Basic Airflow Principles

Introduction to Airflow
- Velocity
- Static pressure
- Airflow volume - CFM / SCFM (Static CFM)

Blowers and Fans
- Introduction to indoor blowers
- Indoor blowers - types and selection
- Fan operation
- Adjustable pulley

Applied Knowledge: Regs, Codes, & Design

Air Quality Regulations
Indoor Air Quality
- Fresh air supplies

Electrical Code Requirements
- Overview of electrical code
Circuit breaker and fuse requirements
General wiring practices
Class I wire sizing
Class II wire sizing
Conduit sizing
Definitions

STATE AND LOCAL REGULATIONS AND CODES

STATE AND LOCAL REGULATIONS
State requirements for technicians

CODES
Plumbing
Municipalities
HVAC for Lt. Commercial

FIRE PROTECTION REGULATIONS AND CODES

REQUIRED COMPONENTS
Return air sensors
Fire dampers

FIRE PREVENTION
Overview

DESIGN CONSIDERATIONS - COMFORT

TEMPERATURE
Designing for capacity
Using industry standards

HUMIDITY
Role of humidity in comfort
Using industry standards

INDOOR AIR QUALITY
Ventilation - comfort
Air cleaning for comfort
Industry standards for air quality
Outside air

SOUND LEVEL
Equipment location considerations
Isolation, mounting pad, duct, and structure
Duct systems

DESIGN CONSIDERATIONS - RESIDENTIAL

SPLIT SYSTEMS
Ventilation - fresh air
Ventilation - equipment

AIR BALANCING
Blower speed adjustments
Damper position adjustments

RETROFIT INSTALLATIONS
Insulation
Vapor barrier

DESIGN CONSIDERATIONS - COMPONENTS

BLUEPRINT READING
Determination of dimension from scale blueprint/plans
Introduction to blueprints/plans reading
Visualizing duct layout from blueprints/plans

SPECIAL DUCTS & FITTINGS
Working drawings vs. Isometric drawings
Markings and abbreviations for duct fitting and manufacturing
Measurement for replacement of special duct or fitting

DUCTS & FITTINGS
Specifying physical dimensions
Sketching duct layout
Duct fitting equivalency - EQ to duct size

STATIC PRESSURE LOSSES IN FILTRATION SYSTEMS
Electronic air cleaners (EAC's)
 Electrostatic
 Media type filters

DIFFUSERS
 Selecting diffusers
 Proper locations

GRILLES
 Selecting grilles
 Proper locations

REGISTERS
 Selecting registers
 Proper locations

MECHANICAL CODE

EQUIPMENT ACCESS
 Minimum clearance
 Electrical disconnects
 Fire dampers

REFRIGERANT LINE ROUTING
 Support requirements
 Inspection requirements

CONDENSATE DRAINS
 Materials
 Sizing

INDUSTRY STANDARDS

EQUIPMENT STANDARDS
 Introduction to industry standards
 ARI standards for ratings

SYSTEM STANDARDS
 Introduction to industry standards
 Industry standards

DESIGN CONSIDERATIONS - LIGHT COMMERCIAL

SPLIT SYSTEMS
 System designs - closets, basements, etc.
 Air distribution systems
 Ventilation - fresh air
 Ventilation - equipment

PACKAGED SYSTEMS
 System designs
 Economizers
 Ventilation - equipment

AIR BALANCING
 Duct sizing
 Blower speed adjustments
 Damper position adjustments
 Measurement of air flow rate
 Fan laws
\[
\frac{CFM_n}{CFM_o} = \frac{RPM_n}{RPM_o} \quad \text{for old, new}
\]

CFM and RPM are interchangeable.

\[
\left(\frac{CFM_n}{CFM_o}\right)^2 = \frac{Sp_n}{Sp_o} \quad \text{OR} \quad CFM_o = \frac{Sp_o}{Sp_n} \cdot \frac{CFM_n}{CFM_o}
\]

\[
\left(\frac{CFM_n}{CFM_o}\right)^3 = \frac{BHP_n}{BHP_o} \quad \text{OR} \quad CFM_o = \frac{BHP_o}{BHP_n} \cdot \left(\frac{CFM_n}{CFM_o}\right)^3
\]

\[\text{Hydronics: } AP = Sp, \quad CFM = GPM, \quad RPM = GPM\]

\[
MAT = (OAT \times 0\%) + (RAT \times RA)
\]

\[
0 = \text{Outside}
\]

\[
T = \text{Temperature}
\]

\[
R = \text{Return}
\]

\[
M = \text{Mixed}
\]

\[
A = \text{Air}
\]

\[
\frac{AC/Hr \times Volume}{60\text{min}} = CFM
\]

\[
v = 4005 \times Jvp
\]

\[
Vp = <4:05 > 2
\]

\[
\text{Pressure (PSI)} = 0.433 \times \text{Head (feet of water)}
\]

\[
1 \text{IWC} = 0.0360 \text{PSI}
\]

\[
1 \text{ PSI} = 27.72 \text{ IWC}
\]

\[
\text{Pressure 1} \times \text{Volume 1} = \text{Pressure 2} \times \text{Volume 2}
\]

\[
\text{Area} = \pi x \text{radius}^2
\]

\[
A^2 + B^2 = C
\]

\[
\text{Diameter} = \frac{\text{Circumference}}{\pi}
\]

\[
\frac{ASP \times 100}{FR} = TEL \quad (\text{IWq100})
\]

\[
\text{Friction} = \text{Series}
\]

\[
\text{CFM} = \frac{\text{CFM} - (\text{Watts} \times 3.413)}{\left(\frac{\text{AT} \times 1.08}{1/CL + 1/C2 + \ldots + 1/Cn}\right)}
\]

\[
\text{CFM} = \frac{\text{Watts} \times 3.413}{\left(\frac{\text{AT} \times 1.08}{1/CL + 1/C2 + \ldots + 1/Cn}\right)}
\]
Pressure (PSIG), Vacuum (in. Hg) - Bold Italic Figures
To determine subcooling for 404A, 407C, and 4220, use BUBBLE POINT values (temperatures above 50° F - gray background)
To determine superheat for 404A, 407C, and 4220, use DEW POINT values (temperatures 50° F and below)

<table>
<thead>
<tr>
<th>TEMP.</th>
<th>PRESSURE (PSIG)</th>
<th>TEMPERATURE (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>407C</td>
<td>22</td>
<td>404A</td>
</tr>
<tr>
<td>410A</td>
<td>507</td>
<td></td>
</tr>
</tbody>
</table>

CONTINUED
To determine subcooling for 404A, 407C, and 4220, use BUBBLE POINT values (temperatures above 50°F -gray background)
To determine superheat for 404A, 407C, and 4220, use DEW POINT values (temperatures 50°F and below)